保证多轴同步协调运动的常用方法主要分为两大类:机械方式和电气方式。
机械式同步
机械式同步出现较早,它主要通过在运动轴之间添加物理连接来实现。该方法往往使用一台大功率电机作为动力来源,并通过齿轮、链条、皮带等机械结构实现能量的传递。改变这些机械环节的特性,就可以使整个系统的传动比、转速等参数产生相应变化。在工作时,如果某个从运动轴的负载受到扰动,该扰动将会通过机械环节传递给主轴,从而改变主轴的输出。由于主轴和从轴之间均存在机械连接,因此其它从动轴的输出也会发生相应变化,从而起到同步控制的效果。
从机械式同步控制方法的实现原理可知,该方法具有原理简单、易于实现等优点,但同时也存在以下不足:
1)由于机械式同步一般只使用单一的动力元件,导致各从轴所分配到的功率相对较小,限制了它们带动负载的能力;
2)机械同步系统中的传动环节一般采用接触式连接,工作时所产生的摩擦不仅会造成能量的损耗,还会磨损传动零部件,影响同步性能,缩短系统使用寿命,不利于维护保养;
3)由于采用机械式连接,该种同步方法的结构比较固定,参数不易调节。若需要对其做出修改,则必须增加或者移去某些机械零部件,操作较为繁琐。另外机械连接也会受到系统结构尺寸的限制,难以实现远距离同步控制。
电气式同步
随着科技的进步,尤其是伺服数控技术的迅速发展,科研人员提出了电气式同步控制方法,有效解决了机械式同步所存在的问题。电气式同步控制主要由一个核心控制器以及与其相连的若干个子单元组成,每个子单元都有一个独立电机来驱动对应运动轴。设计人员通过编写相应程序,使得各子单元在核心控制器的协调下工作,保证运动轴的同步运行。由于每个轴都由单独的电机驱动,因此该种方法带动负载的能力有了显著提高,且简化了设备机械结构,能够实现精度更高,同步性更好的控制。电气式同步涉及到了很多学科的综合知识,具有巨大的发展前景,可以在各个领域内广泛应用。